

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 1 of 15 www.netacad.com

Lab - Build a CI/CD Pipeline Using Jenkins (Instructor Version)

Instructor Note: Red font color or gray highlights indicate text that appears in the instructor copy only.

Answers: 6.3.6 Lab - Build a CI-CD Pipeline Using Jenkins

Objectives

Part 1: Launch the DEVASC VM

Part 2: Commit the Sample App to Git

Part 3: Modify the Sample App and Push Changes to Git

Part 4: Download and Run the Jenkins Docker Image

Part 5: Configure Jenkins

Part 6: Use Jenkins to Run a Build of Your App

Part 7: Use Jenkins to Test a Build

Part 8: Create a Pipeline in Jenkins

Background / Scenario

In this lab, you will commit the Sample App code to a GitHub repository, modify the code locally, and then
commit your changes. You will then install a Docker container that includes the latest version of Jenkins. You
will configure Jenkins and then use Jenkins to download and run your Sample App program. Next, you will
create a testing job inside Jenkins that will verify your Sample App program successfully runs each time you
build it. Finally, you will integrate your Sample App and testing job into a Continuous Integration/Continuous
Development pipeline that will verify your Sample App is ready to be deployed each time you change the
code.

Required Resources

 1 PC with operating system of your choice

 Virtual Box or VMWare

 DEVASC Virtual Machine

Instructions

Part 1: Launch the DEVASC VM

If you have not already completed the Lab - Install the Virtual Machine Lab Environment, do so now. If you
have already completed that lab, launch the DEVASC VM now.

Part 2: Commit the Sample App to Git

In this part, you will create a GitHub repository to commit the sample-app files you created in a previous lab.
You created a GitHub account in a previous lab. If you have not done so yet, visit github.com now and create
an account.

Step 1: Login to GitHub and create a new repository.

a. Login at https://github.com/ with your credentials.

https://itexamanswers.net/6-3-6-lab-build-a-ci-cd-pipeline-using-jenkins-answers.html

Lab - Build a CI/CD Pipeline Using Jenkins

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 2 of 15 www.netacad.com

b. Select the "New repository" button or click on the "+" icon in the upper right corner and select "New
repository".

c. Create a repository using the following information:

Repository name: sample-app

Description: Explore CI/CD with GitHub and Jenkins

Public/Private: Private

d. Select: Create repository

Step 2: Configure your Git credentials locally in the VM.

Open a terminal window with VS Code in the DEVASC VM. Use your name in place of "Sample User" for the
name in quotes " ". Use @example.com for your email address.

devasc@labvm:~$ git config --global user.name "Sample User"

devasc@labvm:~$ git config --global user.email sample@example.com

Step 3: Initialize a directory as the Git repository.

You will use the sample-app files you created in a previous lab. However, those files are also stored for your
convenience in the /labs/devnet-src/jenkins/sample-app directory. Navigate to the jenkins/sample-app
directory and initialize it as a Git repository.

devasc@labvm:~$ cd labs/devnet-src/jenkins/sample-app/

devasc@labvm:~/labs/devnet-src/jenkins/sample-app$ git init

Initialized empty Git repository in /home/devasc/labs/devnet-src/jenkins/sample-

app/.git/

devasc@labvm:~/labs/devnet-src/jenkins/sample-app$

Step 4: Point Git repository to GitHub repository.

Use the git remote add command to add a Git URL with a remote alias of "origin" and point to the newly
created repository on GitHub. Using the URL of the Git repository you created in Step 1, you should only need
to replace the github-username in the following command with your GitHub username.

Note: Your GitHub username is case-sensitive.

devasc@labvm:~/labs/devnet-src/jenkins/sample-app$ git remote add origin

https://github.com/github-username/sample-app.git

devasc@labvm:~/labs/devnet-src/jenkins/sample-app$

Step 5: Stage, commit, and push the sample-app files to the GitHub repository.

a. Use the git add command to stage the files in the jenkins/sample-app directory. Use the asterisk (*)
argument to stage all files in the current directory.

devasc@labvm:~/labs/devnet-src/jenkins/sample-app$ git add *

b. Use the git status command to see the files and directories that are staged and ready to be committed to
your GitHub repository.

devasc@labvm:~/labs/devnet-src/jenkins/sample-app$ git status

On branch master

No commits yet

Changes to be committed:

Lab - Build a CI/CD Pipeline Using Jenkins

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 3 of 15 www.netacad.com

 (use "git rm --cached <file>..." to unstage)

 new file: sample-app.sh

 new file: sample_app.py

 new file: static/style.css

 new file: templates/index.html

devasc@labvm:~/labs/devnet-src/jenkins/sample-app$

c. Use the git commit command to commit the staged files and start tracking changes. Add a message of
your choice or use the one provided here.

devasc@labvm:~/labs/devnet-src/jenkins/sample-app$ git commit -m "Committing

sample-app files."

[master 4030ab6] Committing sample-app files

 4 files changed, 46 insertions(+)

 create mode 100644 sample-app.sh

 create mode 100644 sample_app.py

 create mode 100644 static/style.css

 create mode 100644 templates/index.html

d. Use the git push command to push your local sample-app files to your GitHub repository.

devasc@labvm:~/labs/devnet-src/jenkins/sample-app$ git push origin master

Username for 'https://github.com': username

Password for 'https://AllJohns@github.com': password

Enumerating objects: 9, done.

Counting objects: 100% (9/9), done.

Delta compression using up to 2 threads

Compressing objects: 100% (5/5), done.

Writing objects: 100% (8/8), 1.05 KiB | 1.05 MiB/s, done.

Total 8 (delta 0), reused 0 (delta 0)

To https://github.com/AllJohns/sample-app.git

 d0ee14a..4030ab6 master -> master

devasc@labvm:~/labs/devnet-src/jenkins/sample-app$

Note: If, instead of a request for your username, you get a message from VS Code with the message,
The extension ‘Git’ wants to sign in using GitHub, then you misconfigured either your GitHub
credentials in Step 2 and/or the GitHub URL in Step 4. The URL must have the correct case-sensitive
username and the name of the repository that you created in Step 1. To reverse your previous git add
command, use the command git remote rm origin. Then return to Step 2 making sure to enter the
correct credentials and, in Step 4, entering the correct URL.

Note: If, after entering your username and password, you get a fatal error stating repository is not found,
you most likely submitted an incorrect URL. You will need to reverse your git add command with the git
remote rm origin command.

Part 3: Modify the Sample App and Push Changes to Git

In Part 4, you will install a Jenkins Docker image that will use port 8080. Recall that your sample-app files are
also specifying port 8080. The Flask server and Jenkins server cannot both use 8080 at the same time.

In this part, you will change the port number used by the sample-app files, run the sample-app again to verify
it works on the new port, and then push your changes to your GitHub repository.

Lab - Build a CI/CD Pipeline Using Jenkins

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 4 of 15 www.netacad.com

Step 1: Open the sample-app files.

Make sure you are still in the ~/labs/devnet-src/jenkins/sample-app directory as these are the files that are
associated with your GitHub repository. Open both sample_app.py and sample-app.sh for editing.

Step 2: Edit the sample-app files.

a. In sample_app.py, change the one instance of port 8080 to 5050 as shown below.

from flask import Flask

from flask import request

from flask import render_template

sample = Flask(__name__)

@sample.route("/")

def main():

 return render_template("index.html")

if __name__ == "__main__":

 sample.run(host="0.0.0.0", port=5050)

b. In sample-app.sh, change the three instances of port 8080 to 5050 as shown below.

#!/bin/bash

mkdir tempdir

mkdir tempdir/templates

mkdir tempdir/static

cp sample_app.py tempdir/.

cp -r templates/* tempdir/templates/.

cp -r static/* tempdir/static/.

echo "FROM python" >> tempdir/Dockerfile

echo "RUN pip install flask" >> tempdir/Dockerfile

echo "COPY ./static /home/myapp/static/" >> tempdir/Dockerfile

echo "COPY ./templates /home/myapp/templates/" >> tempdir/Dockerfile

echo "COPY sample_app.py /home/myapp/" >> tempdir/Dockerfile

echo "EXPOSE 5050" >> tempdir/Dockerfile

echo "CMD python3 /home/myapp/sample_app.py" >> tempdir/Dockerfile

cd tempdir

docker build -t sampleapp .

docker run -t -d -p 5050:5050 --name samplerunning sampleapp

docker ps -a

Step 3: Build and verify the sample-app.

a. Enter the bash command to build your app using the new port 5050.

devasc@labvm:~/labs/devnet-src/jenkins/sample-app$ bash ./sample-app.sh

Lab - Build a CI/CD Pipeline Using Jenkins

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 5 of 15 www.netacad.com

Sending build context to Docker daemon 6.144kB

Step 1/7 : FROM python

 ---> 4f7cd4269fa9

Step 2/7 : RUN pip install flask

 ---> Using cache

 ---> 57a74c0dff93

Step 3/7 : COPY ./static /home/myapp/static/

 ---> Using cache

 ---> e70310436097

Step 4/7 : COPY ./templates /home/myapp/templates/

 ---> Using cache

 ---> e41ed6d0f933

Step 5/7 : COPY sample_app.py /home/myapp/

 ---> 0a8d152f78fd

Step 6/7 : EXPOSE 5050

 ---> Running in d68f6bfbcffb

Removing intermediate container d68f6bfbcffb

 ---> 04fa04a1c3d7

Step 7/7 : CMD python3 /home/myapp/sample_app.py

 ---> Running in ed48fdbc031b

Removing intermediate container ed48fdbc031b

 ---> ec9f34fa98fe

Successfully built ec9f34fa98fe

Successfully tagged sampleapp:latest

d957a4094c1781ccd7d86977908f5419a32c05a2a1591943bb44eeb8271c02dc

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

d957a4094c17 sampleapp "/bin/sh -c 'python …" 1 second ago

Up Less than a second 0.0.0.0:5050->5050/tcp samplerunning

devasc@labvm:~/labs/devnet-src/jenkins/sample-app$

b. Open a browser tab and navigate to localhost:5050. You should see the message You are calling me
from 172.17.0.1.

c. Shut down the server when you have verified that it is operating on port 5050. Return to the terminal
window where the server is running and press CTRL+C to stop the server.

Step 4: Push your changes to GitHub.

a. Now you are ready to push your changes to your GitHub repository. Enter the following commands.

devasc@labvm:~/labs/devnet-src/jenkins/sample-app$ git add *

devasc@labvm:~/labs/devnet-src/jenkins/sample-app$ git status

On branch master

Changes to be committed:

 (use "git restore --staged <file>..." to unstage)

 modified: sample-app.sh

 modified: sample_app.py

 new file: tempdir/Dockerfile

 new file: tempdir/sample_app.py

 new file: tempdir/static/style.css

 new file: tempdir/templates/index.html

Lab - Build a CI/CD Pipeline Using Jenkins

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 6 of 15 www.netacad.com

devasc@labvm:~/labs/devnet-src/jenkins/sample-app$ git commit -m "Changed

port from 8080 to 5050."

[master 98d9b2f] Changed port from 8080 to 5050.

 6 files changed, 33 insertions(+), 3 deletions(-)

 create mode 100644 tempdir/Dockerfile

 create mode 100644 tempdir/sample_app.py

 create mode 100644 tempdir/static/style.css

 create mode 100644 tempdir/templates/index.html

devasc@labvm:~/labs/devnet-src/jenkins/sample-app$ git push origin master

Username for 'https://github.com': username

Password for 'https://AllJohns@github.com': password

Enumerating objects: 9, done.

Counting objects: 100% (9/9), done.

Delta compression using up to 2 threads

Compressing objects: 100% (6/6), done.

Writing objects: 100% (6/6), 748 bytes | 748.00 KiB/s, done.

Total 6 (delta 2), reused 0 (delta 0)

remote: Resolving deltas: 100% (2/2), completed with 2 local objects.

To https://github.com/AllJohns/sample-app.git

 a6b6b83..98d9b2f master -> master

devasc@labvm:~/labs/devnet-src/jenkins/sample-app$

b. You can verify that your GitHub repository is updated by visiting https://github.com/github-
user/sample-app. You should see your new message (Changed port from 8080 to 5050.) and that the
latest commit timestamp has been updated.

Part 4: Download and Run the Jenkins Docker Image

In this part, you will download the Jenkins Docker image. You will then start an instance of the image and
verify that the Jenkins server is running.

Step 1: Download the Jenkins Docker image.

The Jenkins Docker image is stored here: https://hub.docker.com/r/jenkins/jenkins. At the time of the writing
of this lab, that site specifies that you use the docker pull jenkins/jenkins command to download the latest
Jenkins container. You should get output similar to the following:

devasc@labvm:~/labs/devnet-src/jenkins/sample-app$ docker pull

jenkins/jenkins:lts

lts: Pulling from jenkins/jenkins

3192219afd04: Pulling fs layer

17c160265e75: Pulling fs layer

cc4fe40d0e61: Pulling fs layer

9d647f502a07: Pulling fs layer

d108b8c498aa: Pulling fs layer

1bfe918b8aa5: Pull complete

dafa1a7c0751: Pull complete

650a236d0150: Pull complete

cba44e30780e: Pull complete

52e2f7d12a4d: Pull complete

d642af5920ea: Pull complete

Lab - Build a CI/CD Pipeline Using Jenkins

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 7 of 15 www.netacad.com

e65796f9919e: Pull complete

9138dabbc5cc: Pull complete

f6289c08656c: Pull complete

73d6b450f95c: Pull complete

a8f96fbec6a5: Pull complete

9b49ca1b4e3f: Pull complete

d9c8f6503715: Pull complete

20fe25b7b8af: Pull complete

Digest: sha256:717dcbe5920753187a20ba43058ffd3d87647fa903d98cde64dda4f4c82c5c48

Status: Downloaded newer image for jenkins/jenkins:lts

docker.io/jenkins/jenkins:lts

devasc@labvm:~/labs/devnet-src/jenkins/sample-app$

Step 2: Start the Jenkins Docker container.

Enter the following command on one line. You may need to copy it to a text editor if you are viewing a PDF
version of this lab to avoid line breaks. This command will start the Jenkins Docker container and then allow
Docker commands to be executed inside your Jenkins server.

devasc@labvm:~/labs/devnet-src/jenkins/sample-app$ docker run --rm -u root -p

8080:8080 -v jenkins-data:/var/jenkins_home -v $(which

docker):/usr/bin/docker -v /var/run/docker.sock:/var/run/docker.sock -v

"$HOME":/home --name jenkins_server jenkins/jenkins:lts

The options used in this docker run command are as follows:

o --rm - This option automatically removes the Docker container when you stop running it.

o -u - This option specifies the user. You want this Docker container to run as root so that all Docker
commands entered inside the Jenkins server are allowed.

o -p - This option specifies the port the Jenkins server will run on locally.

o -v - These options bind mount volumes needed for Jenkins and Docker. The first -v specifies where
Jenkins data will be stored. The second -v specifies where to get Docker so that you can run Docker
inside the Docker container that is running the Jenkins server. The third -v specifies the PATH
variable for the home directory.

Step 3: Verify the Jenkins server is running.

The Jenkins server should now be running. Copy the admin password that displays in the output, as shown in
the following.

Do not enter any commands in this server window. If you accidentally stop the Jenkins server, you will need
to re-enter the docker run command from Step 2 above. After the initial install, the admin password is
displayed as shown below.

<output omitted>

Jenkins initial setup is required. An admin user has been created and a password

generated.

Please use the following password to proceed to installation:

77dc402e31324c1b917f230af7bfebf2 <--Your password will be different

Lab - Build a CI/CD Pipeline Using Jenkins

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 8 of 15 www.netacad.com

This may also be found at: /var/jenkins_home/secrets/initialAdminPassword

<output omitted>

2020-05-12 16:34:29.608+0000 [id=19] INFO hudson.WebAppMain$3#run: Jenkins is

fully up and running

Note: If you lose the password, or it does not display as shown above, or you need to restart the Jenkins
sever, you can always retrieve the password by accessing the command line of Jenkins Docker container.
Create a second terminal window in VS Code and enter the following commands so that you do not stop the
Jenkins server.:

devasc@labvm:~/labs/devnet-src/jenkins/sample-app$ docker exec -it

jenkins_server /bin/bash

root@19d2a847a54e:/# cat /var/jenkins_home/secrets/initialAdminPassword

77dc402e31324c1b917f230af7bfebf2

root@19d2a847a54e:/# exit

exit

devasc@labvm:~/labs/devnet-src/jenkins/sample-app$

Note: Your container ID (19d2a847a54e highlighted above) and password will be different.

Step 4: Investigate the levels of abstraction currently running on your computer.

The following ASCII diagram shows the levels of abstraction in this Docker-inside-Docker (dind)
implementation. This level of complexity is not unusual in today’s networks and cloud infrastructures.

+--+

|Your Computer’s Operating System |

| +----------------------------------+ |

| |DEVASC VM | |

| | +----------------------------+ | |

| | |Docker container | | |

| | | +----------------------+ | | |

| | | | Jenkins server | | | |

| | | | +----------------+ | | | |

| | | | |Docker container| | | | |

| | | | +----------------+ | | | |

| | | +----------------------+ | | |

| | +----------------------------+ | |

| +----------------------------------+ |

+--+

Part 5: Configure Jenkins

In this Part, you will complete the initial configuration of the Jenkins server.

Step 1: Open a web browser tab.

Navigate to http://localhost:8080/ and login in with your copied admin password.

Step 2: Install the recommended Jenkins plugins.

Click Install suggested plugins and wait for Jenkins to download and install the plugins. In the terminal
window, you will see log messages as the installation proceeds. Be sure that you do not close this terminal
window. You can open another terminal window for access to the command line.

Lab - Build a CI/CD Pipeline Using Jenkins

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 9 of 15 www.netacad.com

Step 3: Skip creating a new admin user.

After the installation finishes, you are presented with the Create First Admin User window. For now, click
Skip and continue as admin at the bottom.

Step 4: Skip creating an instance configuration.

In the Instance Configuration window, do not change anything. Click Save and Finish at the bottom.

Step 5: Start using Jenkins.

In the next window, click Start using Jenkins. You should now be on the main dashboard with a Welcome
to Jenkins! message.

Part 6: Use Jenkins to Run a Build of Your App

The fundamental unit of Jenkins is the job (also known as a project). You can create jobs that do a variety of
tasks including the following:

o Retrieve code from a source code management repository such as GitHub.

o Build an application using a script or build tool.

o Package an application and run it on a server

In this part, you will create a simple Jenkins job that retrieves the latest version of your sample-app from
GitHub and runs the build script. In Jenkins, you can then test your app (Part 7) and add it to a development
pipeline (Part 8).

Step 1: Create a new job.

a. Click the Create a job link directly below the Welcome to Jenkins! message. Alternatively, you can click
New Item in the menu on the left.

b. In the Enter an item name field, fill in the name BuildAppJob.

c. Click Freestyle project as the job type. In the description, the SCM abbreviation stands for software
configuration management, which is a classification of software that is responsible for tracking and
controlling changes in software.

d. Scroll to the bottom and click OK.

Step 2: Configure the Jenkins BuildAppJob.

You are now in the configuration window where you can enter details about your job. The tabs across the top
are just shortcuts to the sections below. Click through the tabs to explore the options you can configure. For
this simple job, you only need to add a few configuration details.

a. Click the General tab, add a description for your job. For example, "My first Jenkins job."

b. Click the Source Code Management tab and choose the Git radio button. In the Repository URL field,
add your GitHub repository link for the sample-app taking care to enter your case-sensitive username. Be
sure to add the .git extension at the end of your URL. For example:

https://github.com/github-username/sample-app.git

c. For Credentials, click the Add button and choose Jenkins.

d. In the Add Credentials dialog box, fill in your GitHub username and password, and then click Add.

Note: You will receive an error message that the connection has failed. This is because you have not
selected the credentials yet.

e. In the dropdown for Credentials where it currently says None, choose the credentials you just
configured.

Lab - Build a CI/CD Pipeline Using Jenkins

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 10 of 15 www.netacad.com

f. After you have added the correct URL and credentials, Jenkins tests access to the repository. You should
have no error messages. If you do, verify your URL and credentials. You will need to Add them again as
there is no way at this point to delete the ones you previously entered.

g. At the top of the BuildAppJob configuration window, click the Build tab.

h. For the Add build step dropdown, choose Execute shell.

i. In the Command field, enter the command you use to run the build for sample-app.sh script.

bash ./sample-app.sh

j. Click the Save button. You are returned to the Jenkins dashboard with the BuildAppJob selected.

Step 3: Have Jenkins build the app.

On the left side, click Build Now to start the job. Jenkins will download your Git repository and execute the
build command bash ./sample-app.sh. Your build should succeed because you have not changed anything
in the code since Part 3 when you modified the code.

Step 4: Access the build details.

On the left, in the Build History section, click your build number which should be the #1 unless you have built
the app multiple times.

Step 5: View the console output.

On the left, click Console Output. You should see output similar to the following. Notice the success
messages at the bottom as well as the output from the docker ps -a command. Two docker containers are
running: one for your sample-app running on local port 5050 and one for Jenkins on local port 8080.

Started by user admin

Running as SYSTEM

Building in workspace /var/jenkins_home/workspace/BuildAppJob

using credential 0cf684ea-48a1-4e8b-ba24-b2fa1c5aa3df

Cloning the remote Git repository

Cloning repository https://github.com/github-user/sample-app

 > git init /var/jenkins_home/workspace/BuildAppJob # timeout=10

Fetching upstream changes from https://github.com/github-user/sample-app

 > git --version # timeout=10

using GIT_ASKPASS to set credentials

 > git fetch --tags --progress -- https://github.com/github-user/sample-app

+refs/heads/*:refs/remotes/origin/* # timeout=10

 > git config remote.origin.url https://github.com/github-user/sample-app # timeout=10

 > git config --add remote.origin.fetch +refs/heads/*:refs/remotes/origin/* #

timeout=10

 > git config remote.origin.url https://github.com/github-user/sample-app # timeout=10

Fetching upstream changes from https://github.com/github-user/sample-app

using GIT_ASKPASS to set credentials

 > git fetch --tags --progress -- https://github.com/github-user/sample-app

+refs/heads/*:refs/remotes/origin/* # timeout=10

 > git rev-parse refs/remotes/origin/master^{commit} # timeout=10

 > git rev-parse refs/remotes/origin/origin/master^{commit} # timeout=10

Checking out Revision 230ca953ce83b5d6bdb8f99f11829e3a963028bf

(refs/remotes/origin/master)

 > git config core.sparsecheckout # timeout=10

 > git checkout -f 230ca953ce83b5d6bdb8f99f11829e3a963028bf # timeout=10

Lab - Build a CI/CD Pipeline Using Jenkins

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 11 of 15 www.netacad.com

Commit message: "Changed port numbers from 8080 to 5050"

 > git rev-list --no-walk 230ca953ce83b5d6bdb8f99f11829e3a963028bf # timeout=10

[BuildAppJob] $ /bin/sh -xe /tmp/jenkins1084219378602319752.sh

+ bash ./sample-app.sh

Sending build context to Docker daemon 6.144kB

Step 1/7 : FROM python

 ---> 4f7cd4269fa9

Step 2/7 : RUN pip install flask

 ---> Using cache

 ---> 57a74c0dff93

Step 3/7 : COPY ./static /home/myapp/static/

 ---> Using cache

 ---> aee4eb712490

Step 4/7 : COPY ./templates /home/myapp/templates/

 ---> Using cache

 ---> 594cdc822490

Step 5/7 : COPY sample_app.py /home/myapp/

 ---> Using cache

 ---> a001df90cf0c

Step 6/7 : EXPOSE 5050

 ---> Using cache

 ---> eae896e0a98c

Step 7/7 : CMD python3 /home/myapp/sample_app.py

 ---> Using cache

 ---> 272c61fddb45

Successfully built 272c61fddb45

Successfully tagged sampleapp:latest

9c8594e62079c069baf9a88a75c13c8c55a3aeaddde6fd6ef54010953c2d3fbb

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

9c8594e62079 sampleapp "/bin/sh -c 'python …" Less than a second

ago Up Less than a second 0.0.0.0:5050->5050/tcp samplerunning

e25f233f9363 jenkins/jenkins:lts "/sbin/tini -- /usr/…" 29 minutes ago

Up 29 minutes 0.0.0.0:8080->8080/tcp, 50000/tcp jenkins_server

Finished: SUCCESS

Step 6: Open another web browser tab and verify sample app is running.

Type in the local address, localhost:5050. You should see the content of your index.html displayed in light
steel blue background color with You are calling me from 172.17.0.1 displayed in as H1.

Part 7: Use Jenkins to Test a Build

In this part, you will create a second job that tests the build to ensure that it is working properly.

Note: You need to stop and remove the samplerunning docker container.

devasc@labvm:~/labs/devnet-src/jenkins/sample-app$ docker stop samplerunning

samplerunning

devasc@labvm:~/labs/devnet-src/jenkins/sample-app$ docker rm samplerunning

Lab - Build a CI/CD Pipeline Using Jenkins

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 12 of 15 www.netacad.com

samplerunning

Step 1: Start a new job for testing your sample-app.

a. Return to the Jenkins web browser tab and click the Jenkins link in the top left corner to return to the
main dashboard.

b. Click the New Item link to create a new job.

c. In the Enter an item name field, fill in the name TestAppJob.

d. Click Freestyle project as the job type.

e. Scroll to the bottom and click OK.

Step 2: Configure the Jenkins TestAppJob.

a. Add a description for your job. For example, "My first Jenkins test."

b. Leave Source Code Management set to None.

c. Click the Build Triggers tab and check the box, Build after other projects are built. For Projects to
watch, fill in the name BuildAppJob.

Step 3: Write the test script that should run after a stable build of the BuildAppJob.

a. Click the Build tab.

b. Click Add build step and choose Execute shell.

c. Enter the following script. The if command should be all on one line including the ; then. This command
will grep the output returned from the cURL command to see if You are calling me from 172.17.0.1 is
returned. If true, the script exits with a code of 0, which means that there are no errors in the
BuildAppJob build. If false, the script exits with a code of 1 which means the BuildAppJob failed.

if curl http://172.17.0.1:5050/ | grep "You are calling me from 172.17.0.1"; then

 exit 0

else

 exit 1

fi

d. Click Save and then the Back to Dashboard link on the left side.

Step 4: Have Jenkins run the BuildAppJob job again.

a. Refresh the web page with the refresh button for your browser.

b. You should now see your two jobs listed in a table. For the BuildAppJob job, click the build button on the
far right (a clock with an arrow).

Step 5: Verify both jobs completed.

If all goes well, you should see the timestamp for the Last Success column update for both BuildAppJob
and TestAppJob. This means your code for both jobs ran without error. But you can also verify this for
yourself.

Note: If timestamps do not update, make sure enable auto refresh is turned on by clicking the link in the top
right corner.

a. Click the Link for TestAppJob. Under Permalinks, click the link for your last build, and then click
Console Output. You should see output similar to the following:

Started by upstream project "BuildAppJob" build number 13

originally caused by:

Lab - Build a CI/CD Pipeline Using Jenkins

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 13 of 15 www.netacad.com

 Started by user admin

Running as SYSTEM

Building in workspace /var/jenkins_home/workspace/TestAppJob

[TestAppJob] $ /bin/sh -xe /tmp/jenkins1658055689664198619.sh

+ grep You are calling me from 172.17.0.1

+ curl http://172.17.0.1:5050/

 % Total % Received % Xferd Average Speed Time Time Time Current

 Dload Upload Total Spent Left Speed

 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0

100 177 100 177 0 0 29772 0 --:--:-- --:--:-- --:--:-- 35400

 <h1>You are calling me from 172.17.0.1</h1>

+ exit 0

Finished: SUCCESS

b. It is not necessary to verify your sample app is running because the TestAppJob already did this for you.
However, you can open a browser tab for 172.17.0.1:5050 to see that it is indeed running.

Part 8: Create a Pipeline in Jenkins

Although you can currently run your two jobs by simply clicking the Build Now button for the BuildAppJob,
software development projects are typically much more complex. These projects can benefit greatly from
automating builds for continuous integration of code changes and continuously creating development builds
that are ready to deploy. This is the essence of CI/CD. A pipeline can be automated to run based on a variety
of triggers including periodically, based on a GitHub poll for changes, or from a script run remotely. However,
in this part you will script a pipeline in Jenkins to run your two apps whenever you click the pipeline Build
Now button.

Step 1: Create a Pipeline job.

a. Click the Jenkins link in the top left, and then New Item.

b. In the Enter an item name field, type SamplePipeline.

c. Select Pipeline as the job type.

d. Scroll to the bottom and click OK.

Step 2: Configure the SamplePipeline job.

a. Along the top, click the tabs and investigate each section of the configuration page. Notice that there are
a number of different ways to trigger a build. For the SamplePipeline job, you will trigger it manually.

b. In the Pipeline section, add the following script.

node {

 stage('Preparation') {

 catchError(buildResult: 'SUCCESS') {

 sh 'docker stop samplerunning'

 sh 'docker rm samplerunning'

 }

 }

 stage('Build') {

 build 'BuildAppJob'

 }

 stage('Results') {

Lab - Build a CI/CD Pipeline Using Jenkins

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 14 of 15 www.netacad.com

 build 'TestAppJob'

 }

}

This script does the following:

o It creates a single node build as opposed to a distributed or multi node. Distributed or multi node
configurations are for larger pipelines than the one you are building in this lab and are beyond the
scope of this course.

o In the Preparation stage, the SamplePipeline will first make sure that any previous instances of the
BuildAppJob docker container are stopped and removed. But if there is not yet a running container
you will get an error. Therefore, you use the catchError function to catch any errors and return a
“SUCCESS” value. This will ensure that pipeline continues on to the next stage.

o In the Build stage, the SamplePipeline will build your BuildAppJob.

o In the Results stage, the SamplePipeline will build your TestAppJob.

c. Click Save and you will be returned to the Jenkins dashboard for the SamplePipeline job.

Step 3: Run the SamplePipeline.

On the left, click Build Now to run the SamplePipeline job. If you coded your Pipeline script without error,
then the Stage View should show three green boxes with number of seconds each stage took to build. If not,
click Configure on the left to return to the SamplePipeline configuration and check your Pipeline script.

Step 4: Verify the SamplePipeline output.

Click the latest build link under Permalinks, and then click Console Output. You should see output similar to
the following:

Started by user admin

Running in Durability level: MAX_SURVIVABILITY

[Pipeline] Start of Pipeline

[Pipeline] node

Running on Jenkins in /var/jenkins_home/workspace/SamplePipeline

[Pipeline] {

[Pipeline] stage

[Pipeline] { (Preparation)

[Pipeline] catchError

[Pipeline] {

[Pipeline] sh

+ docker stop samplerunning

samplerunning

[Pipeline] sh

+ docker rm samplerunning

samplerunning

[Pipeline] }

[Pipeline] // catchError

[Pipeline] }

[Pipeline] // stage

[Pipeline] stage

[Pipeline] { (Build)

[Pipeline] build (Building BuildAppJob)

Scheduling project: BuildAppJob

Starting building: BuildAppJob #15

Lab - Build a CI/CD Pipeline Using Jenkins

 2020 - 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public Page 15 of 15 www.netacad.com

[Pipeline] }

[Pipeline] // stage

[Pipeline] stage

[Pipeline] { (Results)

[Pipeline] build (Building TestAppJob)

Scheduling project: TestAppJob

Starting building: TestAppJob #18

[Pipeline] }

[Pipeline] // stage

[Pipeline] }

[Pipeline] // node

[Pipeline] End of Pipeline

Finished: SUCCESS
End of document

